FACULTY OF SCIENCE

B.Sc. (CBCS) II-Year (IV-Semester) Regular & Backlog Examinations, June/July-2023 Mathematics-IV

(Algebra)

Max Marks: 80

Time: 3 Hours

SECTION-A

(4x5=20 Marks)

Answer any Four questions from the following ఈక్రిందివానిలో ఏవేని నాలుగు ప్రశ్నలకు సమాధానాలు రాయండి

- 1. Define a Group and prove that in a group G, there is only one identity element. సమూహంను నిర్వచించండి మరియు సమూహంGలో తత్పమ మూలకం ఏకైకం అని నిరూపించండి.
- 2. Write the permutation (13256)(23)(46512) as product of disjoint cycles. (13256)(23)(46512) అనే ప్రస్తారాన్ని వియుక్త చక్రియల లబ్దంగా వ్రాయండి.
- 3. Define a Ring and let *a* belong to a ring *R*. Then prove that a0 = 0a = 0. వలయంను నిర్వచించండి మరియు వలయం R లో a తీసుకొనినచో a0=0a=0 అని నిరూపించండి.
- Let $R = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$: $a_i \in \mathbb{Z}$ and I be subset of R consisting of matrices with even entries. 4. Show that I is an ideal of R.

$$R = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} : a_i \in \mathbb{Z} \right\}$$
ను తీసుకోండి. $R \le I$ సరి ఎంట్రీలు కల మాత్రికలు ఉన్నటువంటి ఉపసమితి అయితే

I ను K కు ఆదర్శం అనిచూపండ.

- 5. Find the generators of Z_{10} . Z_{10} యొక్క జనక మూలకాలను కనుక్కోండి.
- List all zero divisors of $(Z_{20}, +_{20}, \times_{20})$. 6.

 $(Z_{20}, +_{20}, \times_{20})$ యొక్క శూన్యభాజకాల జావితాను తెలుపండి.

SECTION-B

(4x15=60 Marks)

Answer all the following questions ఈక్రింది అన్ని ప్రశన్లలకు సమాధానాలు వ్రాయుము

7. (a) Define a Subgroup. Let G be a group and H a nonempty subset of G. If $ab^{-1} \in H$ whenever a and b are in H, then prove that H is a subgroup of G. ఉపసమూహంను నిర్వచించండి. ఒక సమూహం Gను తీసుకోండి మరియు H , G కి శూన్యేతర ఉపసమితి.

> a మరియు b లు H లో ఉన్నప్పుడల్లా $ab^{-1} \in H$ అయితే H , G కి ఉపసమూహం అని నిరూపించండి. (OR) / ව් ක

- (b) Prove that every subgroup of a cyclic group is cyclic. చక్రియ సమూహం యొక్క ప్రతీ ఉపసమూహం చక్రీయం అని నిరూపించండి.
- (a) Suppose ϕ is an isomorphism from a group G onto a group G then prove that 8. ϕ అనేది సమూహం Gనుండి సమూహం \overline{G} కు తుల్యరూపత అయితే
 - (i) ϕ carries identity element of G to the identity element of G.
 - ϕ,G లోని తత్పమ మూలకం \overline{G} లోని తత్పమ మూలకానికి చేరవేస్తుంది.
 - (ii) For every integer *n* and for every group element *a* in *G*, $\phi(a^n) = \phi(a)^n$.
 - ప్రతీ పూర్లసంఖ్య n మరియు G లోని ప్రతీసమూహ మూలకం a కి $\phi(a^n) = \phi(a)^n$ అని నిరూపించండి.

Contd....2

(b) State and prove Lagrange's theorem. Using this theorem, prove that a group of prime order is cyclic. లెగ్రాంజి సిద్ధాంతాన్ని ప్రవచించి నిరూపించండి. ఈ సిద్ధాంతాన్ని ఉపయోగించి అభాజ్య తరగతి గల ప్రతీ

సమూహం చక్రీయం అని నిరూపించండి.

9. (a) Let ϕ be a group homomorphism from G to \overline{G} . Then prove that $\frac{G}{\ker \phi} \approx \phi(G)$.

 ϕ అనేది G నుంచి \overline{G} కి సమూహ సమరూపతగా తీసుకుంటే $\frac{G}{\ker \phi} \approx \phi(G)$ అని నిరూపించండి.

(b) Prove that characteristic of an integral domain is either 0 or prime. Find the characteristic of a ring $(R,+_{12},\times_{12})$ where $R = \{0,3,6,9\}$. పూర్ణాంక (పదేశం యొక్క లాక్షణికాన్ని 0 లేదా అభాజ్యం అని నిరూపించండి. వలయం $(R,+_{12},\times_{12})$ యొక్క లాక్షణికాన్ని కనుకోర్గండి. ఇక్కడ $R = \{0,3,6,9\}$.

10. (a) Let *R* be a commutative ring with unity and *A* be an ideal of *R* then prove that $\frac{R}{A}$ is field if and only if *A* is maximal ideal.

R అనేది ఒక తత్సమ సహిత వినిమయ వలయం మరియు A , R కు ఆదర్శం అయితే $rac{R}{2}$ క్షేతం \Leftrightarrow A

గరిష్ట ఆదర్శం అని నిరూపించండి.

(b) Define homomorphism of rings and kernel. Show that if $\phi: R \to S$ be a ring homomorphism, then ker ϕ is an ideal of R. వలయ సమరూపతను, అంతస్థంను నిర్వచించండి. $\phi: R \to S$ వలయ సమరూపత అయితే ker ϕ అనేది R కు ఆదర్శం అవుతుందని చూపండి.